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ANATYSIS OF MLXING OF COAXTAIL STREAMS OF DISSIMILAR
FLUIDS INCLUDING ENERGY-GENERATION TERMS

By Herbert Weinstein and Carroll A. Todd

SUMMARY

A solution to the problem of the mixing of coaxial flows of dissimilar
fluids 1s presented. The solution is numerical in nature and permits large vari-
ations of density, velocity, and temperature of the flulds. It is valid close to
or away from the flow inlet.

The system consildered 1s that of a heavy inner fluld surrounded by a light
outer stream that is infinite in extent. The flulds may have any initial tem-
perature and veloclty profiles, and the flow may be lamilnar or turbulent in na-
ture. Provision is made for energy generatlion throughout the flow field. A
term is included to permit only axlal expansion of the heat-generating fluld to
approximate the effect of a cylindrical wall at a relatively large radius.

Results are calculated for varlous cases to compare the analysis with two
sets of experimental data, to 1llustrate the effect of an approximation of the
case with a boundary on the outer stream, and to show the effect of initial input
value on the bulk acceleration of the imner-stream fluid. The following results
were obtalned: The calculated results agreed well with two sets of published
data. A different value of the turbulence relation was found for each data set.
The boundary wall assumption gave relatively straight streamlines far from the
mixing region for cases with heat generation. The containment factor generally
increased with increasing molecular-welght ratio and decreased for increasing
initial velocity ratio. Internal heat generation decreased containment of the
inner-stream fluid.

INTRODUCTION

A solution to the problem of the mixing of coaxial flows of dissimilar
fluids is presented in this report. This work has been engendered by the recent
interest in the investigation of the coaxial-flow gaseous reactor (ref. 1) and
cooled plasma jets (ref. 2). The solution 1s numerical in nature and permits
large initial varilations of density, velocity, and temperature of the fluids,
and it is valid close to the flow inlet as well as far downstream.

There is a great deal of literature on work on coaxlal flows of fluilds.
This previous work, however, is usually limited in at least one of several ways
that prevents 1ts use for the aforementioned problems. The most common



limitation of the previous work is the profile similarity assumption (ref. 3).
This assumptlon limits validity to the region past the potential core. In some
of the analyses transformations are made to obtain closed-form solutions that
severely limit the variation in flow variables. In reference 4 a closed-form
solution for this problem is obtained, but the linearization of transformed egua-
tions that 1s employed again limits the varlation in flow variables. The numeri-
cal approach is taken in thils analysis to avold these limitations.

The system considered here and shown in figure 1 is that of a heavy inner
fluid of circular cross section surrounded by a light outer stream infinite in
extent. The flulds may have any initial temperature and velocity profiles, and
flow may be laminar or turbulent in nature. Provision is made for energy gener-
ation throughout the flow field as a prescribed function of geometric location
and concentration of the inner-stream fluid. A term is included in the momentum
equation to force an axial expansion of the heat-generating fluld to approximate
the effect of a cylindrical wall at a relatively large radius. The transport
properties of the fluids are considered to be independent of temperature but are
permitted to vary with the concentration of the fluid. No consideration has been
given to the hydrodynamic stability of the system or to the aerodynamic compress-
ibility effects.

The analytical portion of this work follows cleosely the methods established
previously by the authors in reference 5. The modifications of the analysis are
primarily the inclusion of the energy equation and the effect of temperature var-
iation, along with an extension to include turbulent flow by the introduction of
turbulent transport properties (ref. 6). The numerical techniques employed in
this report, however, are different from those in reference 5 and are signifi-
cantly superlor. These new techniques provide for greater accuracy and stability
in the solution.

The results of this investigation are expressed in terms of a parameter de-
fined 1In reference 5 called the contaimment factor. Thils is the ratio of the
amount of inner-stream fluld contained between two planes transverse to the axis
compared to the amount that would have been present 1f there had been no acceler-
ation of the inner stream. This parameter is Investigated in regard to its re-
sponse to varylng initial conditionms such as velocity ratio, molecular-weight
ratio, and energy-generation rate.

The direction taken in the development of this analysils has been, in part,
dictated by the lack of experimental data for coaxial flows of fluids with dif-
ferent densities and initial temperatures. Reference 5 is concerned with the
isothermal, laminar coaxial flow of flulds of different densitles and constitutes
the first stage of thils analysls. This work was extended to turbulent flow, and
both a laminar and a turbulent case were compared with experimental data from the
isothermal air-bromine system of reference 6. In the present report, the results
of references 5 and 6 are summarized, the analysis 1s extended to the general
case of coaxlial flow with prescribed Internal heat generation, and the numerical
results for the case of coaxlal flow of hot and cold alrstreams are checked
against the experimental results of reference 7. In this manner, the system of
momentum and diffusion equations and the system of momentum and energy equations
are checked separately. This approach was chosen because no experimental data
could be found for the coaxial-flow system with flulds of both different
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molecular weights and temperatures. It 1s felt that good agreement of the analy-
sis with the two special cases would imply the validity of the general solution
within the limits set by the assumptions made for the physical properties of the

flulds.
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SYMBOLS

finite-difference-equation coefficlents

matrix coefficients

wall-assumption constant, equal to elther 1 or O
constants, 1 = 1 to 4

concentration (mole fraction) of inner-stream component, c(V,z)
specific heat, cp(w,z), c+ (1 - C)E;;Z

initial cp ratioc

molecular diffusivity, D(V,z)

inner and outer flow factor to simulate turbulent flow
flow factor for turbulence

energy-~generation term, G(B,cp,r,z,u,T,c)

function in energy-generatlon term

enthalpy

containment factor, see eq. (45)

thermal conductivity

initial conductivity ratio

length

molecular weight, a constant

molar density of fluld

number of points

Prandtl number, cpu/k

Reynolds number, pur/u
radlal length variable, r(V,z)



thickness of mixing region

Tm

ry initial radius of inner stream
Sec Schmidt number

T temperature, T(¥,z)

Té initial temperature ratlo

u axial velocity component, u(w,z)
Vv molecular volume

VE molecular volume ratio

v radial velocity component

W mass fraction

X dummy variable

Z axial length variable

o prescribed tolerance

B (ml/mz) -1

11(r) initial velocity distribution
Yz(r) initial concentration distribution
Y3(r) initial temperature distribution
€ eddy diffusivity

K constant in turbulence relation
u viscosity, w(V,z)

ﬁé initial viscosity ratio

o) mass density

s stream function

Subscripts:

i,d polints on mesh

max maximum
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min minimum

ref reference

t turbulent property

0 initial conditions (z = 0)
1 inner stream

2 outer stream

11 self diffusion
iz binary diffusion
Superscripts:

- normalized to initial inner-stream value, see ed. (7)

transformed energy term

dummy variable

ANATYSTS
The derivation of the equation set that describes the coaxlal-flow system
is presented in this sectlon. The numerical methods employed in the solution of
these equations are described in the appendix.

Agsumptions and Restrictions

The assumptions and restrictions made in derlving the equation set are gilven
by the following list, but not necessarily in order of importance:

(1) The entire flow field is at a constant pressure, and the static and
total temperatures are considered equal.

(2) There is axial symmetry 1n the flow system.

(3) The following molecular fluid propertiles are independent of temperature:
thermal conductivity, viscosity, diffusivity, and heat capacity.

(4) Thermal diffusion i1s neglected.

(5) The fluids mix ideally; there is no pressure, temperature, or volume
change on mixing.

(6) There is a steady state in the system.




(7) The eddy diffusivities of heat, mass, and momentum are equal.

(8) The normal boundary-layer assumptions are used; that 1s, du/dr >> du/dz,
u >> v, d¢/dr >> d¢/dz, OT/dr >> IT/dz, etc.

(9) The assumption OV/dr >> d¥/dz, which follows from wu >> v, is stated
separately because 1t ls used again In a transformation of coordinates.

Other assumptions are made, mainly in the evaluation of physical properties,
to obtain a solution fram the equation set. These are discussed individually
as they are used.

Derivation of Laminar-Flow Equation Set

The following continulty, momentum, diffusion, and energy equations are
glven for the system shown in figure 1:

Continuity?
Sa-r-(pvr)+5%(pur)=o (2)
Momentum:
ou  ou_1 9 Ju (2)
VS T Y% Toroar \Par
Diffusion:
ow o 1 90 ow
VS +u 5z = or g;(rle)z gr-) (3)
Fnergy!
oh oh 1 o oT
Vd—r--i-ugzv-::a-s}-(rkyr)‘i'G (4:)

Bach equation is written for variable density and applies over the whole flow
field because the gases form a contlnuum.

The continuity equation already contains the steady-state and axisymmetric
assumptions. The momentum equation is the result of simplifying the Navier-
Stokes equation with the steady-state, constant-pressure, axisymmetric, and
boundary-layer assumptlons. The diffusion eguation (ref. 8), which contains the
steady-state and axisymmetric assumptilons but no assumptions as to the variation
in density, is correct for large density variations. No pressure diffusion 1s
considered here, as can be noted from equation (1). The energy equation contalins
the axisymmetric and steady-state assumptions and includes a heat-generation term
that 1s, as yet, unspecified.



Since the fluids mix ideally, the density at a polnt is equal to the sum of
the partial densities at that point. The pressure is constant, and the mass
density can be expressed as the molar density multiplied by the molecular weight,
p = mN/T, or, with m =mc + my(1l - c), as

N
pzm—é‘-[<;al—;'— )c+l:| (5a)

With the substitution B = (ml/mz) - 1, equation (5a) becomes

+ 1
p = mgN BET 2 (5b)

The mass fraction w 1s related to the mole fraction ¢ with

my c
=G Be T T (62)
and
ow M1 dc/ox (6b)
ox mo (BC + 1)2
Introducing the dimensionless quantities
~N
— r — 9] H1,0
r = — L= Scl 0 = —————]S—-—
To H1,0 ’ P1,0%1,1
-z =~ Dip H1Cp,1
7= Rl Pry o = ek
ro Dl,l 2 Lyl
T = 2 T = I{_k— B =g h = (1)
v1,0 1,0 1,0%p,1,0
— TAwq 0P . c
T=g— By =i g = —2—
1,0 ’ H1,0 €p,1,0
— v
V = ——
3,0 J

and substituting them and equations (5b) and (6b) into equations (1) to (4) yield
the following dimensionless equations:

Continuity:



() alet)-

T
Momentum:
~ 8 — U 1 +1 T 3 (—ou.
—+ T ==z g+17—— b = (9)
Br oz €1,0 PC r or or
Diffusion:
va_-c_+a.ai_3(§cgl) 9 —xD _@% (10)
or oz €1,0°¢1,0 T oF {T(Be + 1) oOF
Energy:
— h + T —_—
7B, gl _prl T %—i_(kraT>+G (11)
Br 0z €1,0t11, O Be r or or
where i 1s still unspecified. The stream function 1s defined by
ov = - v &__ﬂ
oz T
(12)
— -+
é% = ru ;3_0_:__];
oT T
This satlisfles the dimensionless continulty eguation.
The momentum, diffuslon, continuilty, and energy equations are now trans-
formed to the Z,{-~plane with the relations
(i S (2 s () (2) )
oz/_ z oz / \ov/_
T ¥ r Z r (13)
(5, - @6
or T
J
Transforming the momentum, diffusion, and energy equations (egs. (9) to (11))
with equations (12) produces the following equations:
Momentum?
QE_B+1_8_< ~Be + 1 au> (14)
aZ Rel’o 51])’ T 8\1!



Diffusion:

dc _ (Be + 1)%2 o (r®Du dc
5z Rey oSy o O ( T oV (15)
Energy:
dh + 1 a( _Bc+1af> TG
U s A krey BE—— = 16
oz ~ Rey oPry o OV TUTTE W) e + 1) (26)

Because of the cylindrical geometry, r does not drop out of the equatlons as
occurs with Cartesian geometry (ref. 6), and a relation between V¥ and T must
be carried along with the transformed equation set. Since SW/BE is zero at
7z = O and considered very small elsewhere, 1t 1s neglected here. From equa-

tions (12) is obtained
s T
f ay® =/ E(ﬁc%l)-?* ar® (17)
0 0

where * denotes the dummy variable. This relation will be used for the initial
conditions since they are expressed as functlons of T. For the integration, in
which T is a dependent variable,

T v
/ ?* ar® = f HE'C_T_—_F_J_Y d\lf* (18)
(6] 0

The energy equation is now altered to remove the enthalpy term. Along a
streamline

is used.

h = h(T,c) T = T(z)
(19)
¢ = c(z) Cp = cp(c)
The function cp(c) 1s taken as
cp(c) = cep,1 * (1 - c)cp’z (20)

This is a molar average of a gquantity that would normally be taken as a mass
average. This approximation provides a linear variation of cp with c¢ that
gsimplifies the following argument. It 1s a good approximation when the molecular
weights are close together but becomes poor as they diverge. It is also true
that



h = cp(c)dT*
To
and
¢h _ (ch) a&T , (oh) dc
dz ~ \oT) az BE'T az
but
oh
8). -0
c
and
T
3n de_(c) N
@), |22 =
T
To
It is seen from egquations (18) that
de
532‘3 Cp,1 = Cp,2 = constant
T
oh
Tref

Combining equations (21) to (23) and introducing the dimensionless groups in

on) _ — (3T o
(az)w = °p (az)w * (1 - g, pd0T (az

equation (7) yield

oo |

J

(21a)

(21pb)

(22a)

(22b)

(24)

The term AT becomes, for a numerical solution, the change in temperature be-

tween the mesh points along a streamline.

For the purposes of this report, the generation term is defined as

0.1 +‘Z)

+ bzre +

Ao

= (Bc + l)%‘
C=u—F (b1 +D;
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or

G-wletloy
T P
where
b
4
H = by + by — + bzr? +
S S 0.1+ %

and the b's are input parameters. The by term provides for constant heat
generation throughout the flow field and essentlally sets the level of heat in-
put. The bs term provides for energy generation in just the inner stream, and
the coefficilent l/T corrects for local density variations due to the rising
temperature levels. Radlal variations of parabolic form are provided for the

bz term, and the by term provides for an inversely proportional axial depend-
dence in the heat generation. This form of the generatlion term allows for both
spatial and species varlation in the local heat-generation rate. Because of this
feature, many different systems can be described or approximated by the equa-
tions. Among these are an arc-Jjet gaining heat energy by recombination (species—
dependent generation) and a gaseous reactor with fission occurring in one gas
(species-dependent generation) and radlative absorption in the second (outer)

gas (approximated by spatially dependent generation).

The energy equation becomes, upon substitution of equations (24) and (25),

— T — = oc B+ 1 0 —Bc + 1 JT
cp = + (1 - cp,z)AT 5 = Rel,OPrl,O 3 (E:Zu = W)

b
+ T by + by — + baTl + — = (26)
T 0.1 + z

For cases without internal heat generation the streamlines far from the mix-
ing region are unaffected by the mixing process, and the results for the system,
which is infinite in the radial direction, apply directly to the case in which
both streams are bounded or contained wlthin a cylinder. In the unbounded case
wilith internal heat generation, however, the streamlines bend outward in the ra-
dial directlon because all the expanslion takes place radially. The case of
bounded coaxial flow with internal heat generation cannot be approximated with
the unbounded case because even far from the mixing reglon the streamlines are
not straight in the unbounded case. Tor systems In whilch there 1s energy gener-
ation in either or both of the flulds, it 1s necessary to modify the equation
set so that it can be applied to a system that is finite in the radial direction.
To do this rigorously would requlre the conversion of the problem from an
initial-value to a boundary-value problem, but thils would greatly complicate the
numerical methods involved in the solution. For the coaxlal-flow reactor and
other systems 1n which the lnteresting region of flow 1s close to the centerline
and far from the radial boundary, this boundary can be approximated by a straight
streamline at a constant radius. The most important wall conditlon, that of

11



zero radial velocity, is satisfied while the conditions of lesser ilmportance,
gsuch as zero axial velocity, which are more difficult to satisfy, are ilgnored.
In order to maintain approximately straight streamlines far from the centerline
for simulation of channel flow, a term is added to the momentum equation that
forces all the gas expansion due to energy generation to occur along a stream-
line. This addition provides a good description of the expansion process far
from the mixing region, where the gradlents of wvelocity and concentration are
small, but it is only an approximation in the mixing region, where the gradients
are large. In the interest of tractability of the equations, however, the term
is defined in the following manner. For continuity along a streamline

pu = constant (27)

Differentiating equation (27) results in

(8) ++(3), -
2 hy 2y

The dependence of p on concentration can be neglected here, since the energy
generation in no way affects concentration. Then

or

o _ T (28)
oz T Az

Only the temperature rise due to energy generatlon is included in thils deriva-
tion, and the energy equation along the streamline can be written as

TG

‘Cp'a:T‘:=:———'- (29)
oz  u(Be + 1)
Combining equations (28) and (29) yields
o G

— = 7 (30)
oz cp(Bc -+ l)

which is the desired term for the axial expansion of the fluid. This term is
added to the shear-force term in the momentum equation (14) to yleld

o7 +18< _Bc+163>+ aG
cu_p*1 BE = —_ 31
7 Rer,o W\ T ) (g + 1) e

where the factor a in the axial-expansion term is a constant equal to 1 or O to
allow for the inclusion or the omission of this term. Equation (31) may be
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rewritten, with the definition of 5, in the form

W _p+1 9 _2—5c+163) au
az_Rel,oW(“ru 7 o)t F " (52)

Equations (15), (17), (18), (26), and (32) form the set to be integrated
from the initial conditions.

The dimensionless transport properties D, i, and k are evaluated from the
ratio of the values of the pure components and also, in the cases of viscosity
and conductivity, from an elementary mixling equation. This relation is good for
low molecular-welght ratios but probably becomes quite poor at higher ratios.
This mixing equation is

m
cmy R (1 - cmy
*1,0 X2,0

X = (33)

when expressed in terms of the dummy variable x (ref. 9). For viscosity, the
use of equation (33) results in

— c + 1

. o b (34)
(B + l)c +

M2
and, for conductivity,

- +

K = Be 11 — (35)
(B + 1)c + =

2

The dimenslonless diffusivity 1s calculated from the Gilliland equation in

the following manner:
2
1/3
_ D,z _ <2V1 ) ‘/i“i<_l_ + _—L>
D a 2 2 \m m
1,1 <V:1L/3 . Vl/S) 1 T
2
Substituting 72 = VZ/Vl and ml/mz =B + 1 ylelds
— 2 +/2(B + 2)
D = - B >
(1 + VJZ‘/S)

The dimenslionless diffusivity can also be derived from a Lennard-Jones potential
argument as shown in reference 5.

Ul
|

(36)
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The mixing law for the heat capaclty of the fluld is expressed by equa-
tion (20). It is a simple molar average of the specific heats of the pure com-

ponents.

Turbulent-Flow Extension
The preceding development for the case of coaxial laminar flow 1s extended

to include the case of turbulent flow by substituting turbulent transport prop-
erties for the laminar ones. The turbulent transport properties are defined as

-
o)
Dy = D(} + %) ” (37)

c.p€
- il
Iy —-k(? + 5 ) )

where € 1s the eddy diffusivity. The eddy diffusivity must be evaluated from
a physical argument and experimental data. The particular argument chosen 1s the
accommodation coefficient argument that states (ref. 3, p. 592)

e = krp(upay = Upin) (38)

or that the eddy diffusivity 1s proportional to the thickness of the mixing re-
glon 1y and the veloclty decrement across the mixing region. The mixing region
thickness can be expressed as a function of the axisl position:

r, = rof(z)
For simplicity,
£(z) = Z0
(ref. 3, p. 596) and, therefore,
ry, = rgZh (39)

Since the regilon of interest for these calculations is close to the inlet and not
much past the potential core, Upgx - Upin 1s taken to equal the maximum velocity
decrement at the initial face:

Unax = Umin = |U2,0 = 41,0 (40)
Combining equations (37) to (39) yields

€ = Kroul’oimlﬁé - 1 (41)
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It is assumed that the outer stream will affect the turbulence level more than

the inner stream.

For this reason, the turbulence level for the system is taken

as

P2,06  KZ'ToPoU1 0 _

m = — uz - 1

2,0 Ho
and
ToP2,0%1,0 _ ToP1,041,0 M1,0 P20 _ _ Be1,0
2.0 Fi,0  H2,0 P10 @m(p + 1)

or

e} € Re )

20 L gm0 g, - (42)

M2.0 w(g + 1)

The term pgp 06/“2,0 1s also called the flow factor FF. It i1s seen that the
flow factor is a function of only the initial conditions, the axial position, and

the two experimentally determined constants

The flow factor is constant with radius
values of the turbulent transport properties
factor varlables and the concentration. The
turbulent property values 1s taken to be the
values.
ues are
Be +

K and m.

at any axlal position. The local
are functions of only the flow-

dependence on concentration of the
same as that used for the lamlnar

When equation (27) is used, the local turbulent-transport-property val-

. )

By = (B + 1)c +

1 -c

1+ FF

Be +

(1 + FF)i,

1

Dy = g+ Dc

-+

1l -c

D -+ FFSCl,O

Be +

D+ FFEZSCJ_)O(B + 1)

(43)

1

K = @+ 1o

1l -~c

I + Pry oFF

+ -

Prl’ouch’ zFF

X, ) "2

J

It can be seen by expanding the dimensionless groups that pz’oe/pg can be held

constant across a radius, but

€ becomes a function of the concentration.

It

is felt that this type of representation ls somewhat more correct than that of

constant across a radius.

holding ¢
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For the cases with energy generation, the temperature level of the system
rises, sometimes to a conslderable extent. The density of the flulds decreases
with increasing axial distance, and the turbulence level of the system 1s af-
fected. In these cases, the density terms in the mixing equations for the tur-
bulent transport properties are modified to include the 1/T wvariation of den-

gity din the following way: N
_— (Be + 1)/T
By = (B + 1)c 1-c¢
T FF e
1 (1 + EF)HZTZ

= (pe + 1)/T _
Dy = (p + 1)c + 1-c < (44)
D + FFScy o D+ FFScy oToiip(p + 1)
~ (Be + 1)/T
Ko = B+ 1)e I-c —
’ (l + pp — B kT,
g J

The experimental results obtained from the literature are used to evaluate
K, the constant in equation (42), by curve-fitting the data. The value of K
is varied until the best fit of the experimental data 1s obtained. The different
values of K for each run are then averaged to obtain a single value of K to

use in the calculations.

Some of the results are presented in terms of the containment factor I

(45)

from reference 3. This parameter is the amount of inner fluid present in a cy-
lindrical sectlion of some very large radius and length L divided by the amount
of inner-stream fluid that would have been present in the section had there been
no acceleration of the inner stream. This contalnment factor may vary from a

maximum of 1 (no acceleration) to a minimum of l/ﬁé.
Program Input
The input to the computer program is the following:
(1) The initial velocity and temperature profiles; when slug flow is

16




deslred, only the velocity and temperature ratios are needed
(2) The molecular-welght ratlios of the two streams

(3) The physical properties of the two fluids as ratilos, U5, VE, kp, and
c
p,2

(4) Tge initial values of dimensionless transfer groups, Rej o, Prl,O: and
c
1,0

(5) The turbulence-relation constants, m and FF

(6) The constants in the internal heat-generation term, by

RESULTS AND DISCUSSION
Accuracy and Limitations

The accuracy of this analysis can be estimated in two ways. First, the size
of the various terms discarded in wrliting the initial equation set may be estl-
mated. When these are small compared to the terms that are kept in the equation
set, it is 1ndicated that the assumptlons leading to the dropping of these terms
are correct. This evaluation was made in reference 3 for the laminar isothermal
case, and it gave satisfactorily low values for the derivatives of velocity and
temperature in the axial direction compared tco the values of these derivatives
in the radial direction. This is considered as a validation of the boundary-
layer assumptions in the initial equation set for thls work, since the momentum
and diffuslon equations appear in exactly the same form here as they do 1in ref-
erence 3. An exception to this is the axlal-expansion term that is sometimes
used in the momentum equation. The axial-expansion term is, however, a separate
approximation and brings In its own loss of accuracy, which cannot be evaluated
here.

The second test of the accuracy of this analysis is whether or not 1t will
fit experimental data. It is important that the predicted values compare with
the measured ones, and also that the shapes of predicted curves follow closely
those of the experimental curves.

Correlation of Experimental Results

There are relatively few experimental data for the mixing of coaxially flow-
ing fluids that are applicable for a check of this analysis. Two applicable sets
of data are selected from the literature for separate speclfic reasons. Silnce no
published experlimental work could be found for the case of simultaneous heat,
mass, and momentum transfer, one of the cases chosen 1s for combined heat and
momentum transfer, and the other is for combined mass and momentum transfer.
There is also no experimental work for energy-generating gases, so the calculated
results for the cases wlth energy generation stand wilthout any conclusive evi-
dence of an accurate formulation of the problem.
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The work of reference 7 for a hot-alr - cold-alr coaxial-flow system was
chosen as representative of combined heat- and momentum-transfer data because of
the effort made to obtain initlal slug-flow velocity profiles in the equipment
and because velocity and temperature profiles were supplied. The alr-bromine
data of reference 6 were chosen for the combined mass- and momentum-transfer data
because of the high molecular-welght ratio (about 5) of the two fluids used.

Figure 2 shows typlcal data from reference 7 with the curve fl1t from the
analysis. In figure Z(a) the velocity profiles show very good agreement between
data and analysis. The trends of the data are fitted very well by the analyti-
cal curves with a single value of K. The correspondlng temperature profiles
are shown in figure 2(b). The agreement is not as good as in the veloclty pro-
files because of the deviation of the analytical curve from the data at an axial
station of z = 13.3. This deviatlion would almost vanish, however, 1f the asym-
metry in the data were removed. Thils 1s lllustrated In the figure 2(b) by the
square data points, which are the original data moved ilnward until the peak-
temperature data point fall on the flow axlis. For the three applicable cases of
reference 7, the value of K obtalned was 0.004710.0002 with the exponent

m = 1/2.

The work of reference 6 1s actually a specilal case of the present analysis.
The analysis of reference 6 i1s smaller in scope, but the equation set derived
here reduces to the set derived there. Filgure 3(a) shows average concentration
against axial dlstance for a case that appeared to be laminar fiow along with the
analytical curve calculated wilth the same initial conditions. The agreement is
very good. Figure S(b) shows data for a turbulent run along with the besgst-fit
analytical curve. The axlal varlation of pe/u 1s taken Independent of =z in
reference 6, and the calculated value of K 1s 0.108. There is very poor agree-
ment between the two sets of data since, even after correcting in an approximate
way for the axial variation of pe/u, there is a factor of 5 between the two
values of the constants. This discrepancy cannot be rectified untlil more data
become avallable for varlous systems. In the followlng calculations, the values
of the emplrical constants obtalned from the data of reference 7 wlll be used
because those data include veloclty and temperature profiles.

The - good agreement between the data and the analysils does not constitute a
valldation of the physical-property assumptions because the energy~equation check
was based on data for a system with a molecular-welght ratio of 1.

Sample Results and Discussion of Heat-Generatlion Terms

Calculations were made with the camputer program to illustrate the effects
of the heat-generation terms 1n the equation set and to present some sample re-

sults.

Flgures 4 to 10 are concerned wilth six cases computed from the analysis.
They all have the same physical-property lnput, the same initlal velocity and
molecular-weight ratlos, and the same flat temperature profiles. They differ in
that there are laminar and turbulent flows for each of the three cases with vary-
ing energy-generation terms. The first case has no internal energy generationj
the second has a prescribed generation rate in the inner stream, but does not

18




include the wall-assumption termj and the third case has the same heat-generation
rate as the second case, but also includes the wall-assumption term.

Flgure 4 shows veloclty proflles for three cases of lamlnar flow with almost
similar initial conditions. Figure 4(a) is a case with no heat generation; fig-
ure 4(b) is a case with heat generation, but with a =0 (no wall assumption);
?nd fi§ure 4(0) is a case with the same heat generation and the wall assumptlon

a=1).

The profiles for all three cases are smooth S-shaped curves after the inl-
tial face. The Important characteristics of the curves are the acceleration of
the central streamline and the momentum spreading of the lnner stream. The case
with no heat generation shows an undisturbed central streamline and very little
spreading of the inner stream at an axial station 27.89 radii downstream
(z = 27.89). For the case of heat generation and a = 0, the central streamline
1s again undlsturbed, but the inner stream has spread to more than double its
initial radius at 7 = 26.08. Since this is essentlally free jet flow, all the
expansion due to heating takes place radially. The case of heat generation with
a = 1, however, shows a central streamline accelerated to about slx times the
initial velocity and a spreading of the inner stream, which is slightly more than
for the case of no heat generation, but much less than for the case of a = 0.

Three cases of turbulent flow with initial conditions that were ldentical to
the laminar ones, except for the turbulence condltion, were also computed. The
veloclty proflles are shown in flgure 5. TFor the case of no heat generation
(fig. S(a)), the center streamline has been accelerated to about 28 times the
initial value at Z = 26.52, and the mixing region extends farther into the inner
stream so that the lnner stream appears to have shrunk a little 1n radius. The
case of heat generation and a = 0 (fig. 5(b)) exhiblts a central streamline that
has been accelerated to a value about 24 times the initial value and a small
amount of spreading of the inner stream at 7z = 29.77. The central streamline
acceleration in the case of no heat generation is an indication of the magniltude
of the momentum diffusivity effect, since there is no temperature-Iinduced accel-
eration. The central streamline acceleration in the case of heat generatlon with
a2 = 0 1s an indication of the magnitude of the effect of the temperature rise,
since the inner stream i1s spreading and the central streamline is not affected
much by the outer stream at these relatively low values of %Z. This 1s borne out
in figure 5(c), which shows the veloclity profiles for the case of heat generation
with a = 1. The central streamline has accelerated to a veloclty about 38 times
the initial value, which is considerably more than that in either figure 5(a)
or (b). This large value 1s due to the combined effects of the momentum diffu-
sivity and the temperature rise. The inner stream has shrunk slightly in radius
so that the outer stream has had more of a chance to act on the central stream-
line than in the case wlth a = O.

The concentration profiles for the cases just dlscussed are shown in flg-
ures 6 and 7 for laminar and turbulent flow, respectively. The ilmportant char-
acteristics 1n these figures are the centerline concentration (mole fraction) and
the mass spreading of the lnner stream. Flgure 6(a) 1s the case of no heat gen-
eration. The centerline concentratlion is about 0.41 at %z = 27.89, and the inner
gtream has shrunk slightly in radius. In figure 6(b), the case of heat genera-
tion with a = O, the centerline concentratlion is about 0.59 at % = 26.08, and
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the inner stream has spread to about double its initial radius. In figure 6(c),
the case of heat generetion with a = 1, the centerline concentration is about
0.64 at Z = 27.49, and the inner stream has spread only slightly from its ini-
tial radius. It 1s important to note that the Inclusion of the heat-generation
term for the laminar cases leads to higher centerline concentrations. Thls is
due to temperature-induced acceleration, whilch causes the inner-stream fluld to
spend less time in the region O < z < 30, and there is less mass transfer in

the reglon.

Figure 7 shows the turbulent~flow cases with centerline velocltlies of about
0.15 to 0.20 at 2z =~ 28 and large inner-stream shrinkage for no heat generation,
slight shrinkage for heat generation and a = 0, and moderate shrinkage for heat
generation and a = 1l. In turbulent flow, the eddy diffusivity is relatively so
large that the lnteresting effect noted previously is masked.

The temperature profiles for the same cases are shown 1n figures 8 and 9
for laminar and turbulent flow, respectively. Only the cases with heat genera-
ticon are shown, since the inltial temperature profiles in these cases were flat.
Figures 8(a) and (b) are for laminar flow with a =0 and a = 1, respectively.
The only observation of any lmportance to be made is the relative spreading of
Imnmer-stream temperature. In figure B(a), the inner stream has spread to almost
double its initial radius at 2z = 26.08, and the mixing reglon is thin, as shown
by the sharp cutoff in temperature. In figure 8(b), the inner stream has spread
only slightly at % = 27.49, and the mixing region 1s st1ll relatively thin.

For the turbulent-flow cases of figures 9(a) and (b), the spreading is much less
pronounced, and the mixing region is qulte large, on the order of the inner-
stream initlal-radius size, at a Z of about 29. For both cases the inner
stream has shrunk to some extent.

The streamlines for the cases Jjust discussed show clearly the value of the
wall-assumption term. This is a term added to the momentum equatlion that, when
a = 1, forces all the fluid expansion due to energy generation to occur along a
streamline.

Figure 10(a) shows streamlines for the three cases of laminar flow. The
solid lines (for the case of a = 0) depart greatly from the circles representing
the case of no heat generatlon. The dashed lines representing the case of a =1
follow closely the values for no heat generation at values of T of about 0.3
- and 2. Since the wall assumptlion 1s poor in the mixing region and no useful
comparison can be made wlth values there, the case with no heat generation i1s not
shown near an r of 1.

For turbulent flow (fig. 10(b)), the case with a = 1 again falls closer
to the no-heat-generation values than the case with a = 0. For turbulent flow,
however, the divergence of any one case from any other is small. It should be
emphaslized that all that 1s shown in figure 10(b) 1s that the wall assumption
does straighten out the streamlines of cases with heat generation so that they
approximate the streamlines that would occur with an actual wall present. No
comparlson with experlimental data 1s made to show the accuracy of the assumption.
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Inner-Stream Contalnment

Figure 11 shows plots of lnner-stream containment as a function of initial-
velocity ratio. Flgures ll(a) and (b) are for cases of heat generation only in
the inner stream and laminar and turbulent flow, respectively. It is seen for
both cases that lncreasing the molecular welght of the inner stream and decreas-
ing the initial velocity ratio increase the containment factor.

For turbulent flow the varilation in Eé has a greater effect than for lam-
inar flow. Also, the values of the containment factor are only slightly higher
for laminar flow than for turbulent flow at low values of Gé (less than about
5). When U, 1s large, however, the laminar values are several times larger
than the turbulent ones. For the case of heat generation in both streams and
laminar flow, increasing the initial velocity ratlo decreases the contaimment
factor, but not to the same extent as for heat generation in the inner stream
only. This 1s due to the fact that the whole system is accelerating in the for-
mer case and the flulds spend less time in the reglon of interest. It is also
seen that the molecular-welght variation has no clear effect on the containment
factor. The reason is that the pure~component specific-heat ratio varies in-
versely with moclecular weilght for ideal gases, and thils variation absorbs a great
deal of the effect of the molecular-welght variation. The final case of heat
generatlon in both streams with turbulent flow shows characteristics similar to
those in the case of heat generation in one stream with turbulent flow. The con-
talnment factor decreases with increasing up and increases with increasing B.
The values of the containment factor are lower for thils case, however, since both
streams are accelerating and the momentum transfer 1ls greater.

SUMMARY OF RESULTS

In thls report, an analysis of the mixing of coaxial streams of disgimilar
fluids is presented. The analysils 1s based on certain assumptlons such as
boundary-layer simplifications, constant pressure in the flow fileld, a simple
approximation for a boundary wall for cases with internal heat generation to
simulate channel flow, and a glven turbulence relation. The analysis ylelded
an equation set that was solved numerically. The results were checked against
two sets of experimental results, and the wall assumption used was evaluated as
to its effect on the flow. The following results were obtainedrs

1. The calculated values agreed well with two sets of publlshed data.

2. For the data of NASA MEMO 12-21-58E, for coaxial hot and cold alrflow,
the turbulence relation obtailned was

Jo} € Re
2297 _ (0.004720.0002)71/2 ——120 _ |52 - 1]
H2,0 pp(p + 1)

where r2,0 is the outer-stream mass density at z = 0, ¢ 1s the eddy diffu-
sivity, Us o 1s the outer-stream viscosity at z = 0, T 1s the dimensionless
axial leng%h variable, Rel’o 1s the 1nner-stream Reynolds number at =z = 0,
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o 1is the dimensionless outer~stream viscosity, B 1s a molecular-weight factor,
and Uy 1s the dimensionless outer-stream axial veloclity component. This re-
lation was used for the remalning calculatilons.

3. The data of Ragsdale and Welnstein for coaxlal flow of bromine and air
yielded the turbulence relation

P2 0€ Rey o
—1—u = 0.108 ===~ [T - 1
2,0 }-12(]3 + 1)

There was poor agreement between the hot-air - cold-alr correlatlon and the
bromine-alr correlation even after the =z dependence was lncluded in the latter.

4. The wall assumption, which conslsted of forclng all the expanslion caused
by energy generation to occur along a streamline, gave relatively stralght
streamlines far from the mixing region, as was deslred.

5. The contalnment factor generally increased with increasing molecular-
welght ratlo and decreased with increasing initial veloclty ratio.

6. The containment factor decreased with increasing internal heat-generation
rate and was affected more by heat generation in the outer stream than by heat
generation 1n the inner stream.

Lewls Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, October 22, 1963
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APPENDIX - NUMERICAL METHOD

In the following discussion all bars are deleted as a matter of conven-
ience.

The equations describing the hydrodynamic system are

Momentums
Ju + 1 O c + 1 du aG
et (e B B) ey ()
Diffusion:
dc _ (Be + 1)2 d @ de
dz =~ ReSc o T oy (42)
Energy:

dc OF B+ 1 O o Be + 1 OT TG
(1~ ep )T S+ op 57 = Rose~ 5y (kr R Fw)* wW(Be + 1) (43)

Continuity:
v
2 . T ay'
w% =2 / (B + 1V (a4)
0
where
(Be + 1)/T

H=1+1c + 1-c
1+ F] peTo(Fy + 1)

v
qu}kT+J'cp<Vl+V2%+V3r2+ 4 )

1+
Do o Be + 1
B+ 1)c_ 1-c
2 -VEZﬁ + 2)
<1 + V%/3>
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1
a =
0

includes heat-generation term in eq. (A1)

excludes heat-generation term in eq. (A1)

(Be + 1)/T
1l -c

k=TToc,

1+ Pr¥F Prusc,. oF
1 2 pya 2

The solutions of equations (Al) to (A4) are to be found on the finite strip
(0 <V < ¥paxs 0 L 2 g,zmax), given the following boundary and initial condi-

tions:

where Tl, Tz, and TB

du OJc OT

5$'= 5$'= SW'E 0 for ¥ =20

u(wmax’z) = Up

T(wmax}z) = TZ >
c(w z) =0
max’ 2
where us and T, are prescribed velocity and temperature ratios, and
N
u(¥,0) = vy (¥)
C(W,O) = YZ(W) k
T(¥,0) = v5(¥)
~
are specified as
1 0<r<l1
Yi(r) =9_
UZ l=rs Tmax
1 0Lrgl
To(r) =
0 1<r< Thax
1 0Lr<1l
Y3(r) =
'I'2 1<r< Thax

Since
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equations (A8) to (A10) can be

2T dy!

uch + 15

¥
r2:=./f
0

determined in terms of V:

(1 osvsBEEE
() =< (a11)
e EEE v,
1 osv<BZE
Tol¥) =< (A12)
+ 1
Q? E—E;—-:ﬁ'W:S Viax
(1 0<V¥ < @2;1
ro(¥) =< (A13)
+ 1
Correspondingly, r(W,O) can be defined as
(
2V B+ 1
| Osv=T3
r(¥,0) = ﬁ (A14)
2T
2y _Bx1L B+ 1
L‘/1+uz (\lf > ) s SV S Vpax
With c*, u* T*, and r* defined as approximate solution vectors of equa-

tions (A1) to (A4$
earlized form as

at some length

z, equation (Al) can be rewritten in a 1in-

d +1 9 ¥+ 10 ag*
e Bt (e 22 ) ST ()
or
55 = Aul¥) e <Bu(w) 5?) + Cyu(V) (A16)

where
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Au(‘l’) = &_l

4+
Re

aG*

Cu(‘[f) = X
. CP(BC y
Similarly, equations (A2) and (A3) can be put into the form of equation (A16)

with coefficlents defined as

~
aol) = Lo £ 02
Bo(y) = X2t e (a18)
Cc(qf) =0
J
and
\
Aq(¥) = P
RePr El - cp,z)Az ac + ":5]
K KD Kl o K
BT(W) _Eru (ic + 1) . - (419)
Cpl¥) = re —
u*(Bc* -+ l)l:(l - ¢p Z)AZ 5—;—'*- c;]
-/

" With the strip R overlayed wlth a number of rectangles of dimensions AV
by Az, a grid or mesh 1s constructed. If the notation Ry g denotes the ith,
jth point on the mesh, then u(wi,zj) =uy 4 can be defined as the functional
value of u(V¥,z) associlated with the grid point Ri,J' :

Using equation (Al6) as a general form and expanding give
2 (s L, aB2u), (A20)
dz N2 - av o

The derivative approximates at a point Ri, j Bare defined implicitly as
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8u> Uy 41 T U5 (
- A21)
(SZ 1,5+ Az

aﬁ) T Ml T B 5 _' o
(5'117 1,3+ 2 &y A
2 . . - 22Uy + ) |
u T = b L 2 1, g‘*‘l Uy_1,35+1 (425)
Y2 AV
i,j+1

Substlitution of equations (AZl) to (AZS) into equation (A20) yields

A;B;  (Byag - Biop) 284B; 1
- Ui 1,54 T \Tos T Az M,

NG 4 AY2 AY2
AyBy Byjyq - B .
151 1+1 1-1 _ Yi,j
* <A¢2 Y )uiﬂ"jﬂ T T A
(A24)

Equation (A24) is valid only on the interior of the grid (i.e.,
1 =2,3, « « ., 0~ 1). The boundary conditions (e.g., egs. (A5) and (A6)) must
be applied to obtain similar equations at 1 = 1 and n. Hence, applylng equa-
tion (AS) to equation (A20) results in

B B gb
1 1 1 P
- <AW2 - AZ) Uy, 541 -+ A\]fz ug, 5+1 cy Az (A25)

and utilizing equation (A6) yilelds

Aan Uy = Bi-l ZAan + L
A\sz - 4 A‘FZ un“l)j+l h A\]fz Az, un,j+l

ApBn  @=- By g
=-<A\Jf2 e )uz'cn'_é\_?l

(A26)
where o is By(Vpax) as glven by equation (ALl7).

When 1 wvarles from 1 to n (i.e., Y =0 to V¥ = wmax)’ a linear tridiag-
onal system of equations 1s generated of the form
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gl ?l 0 « o 0 ul,j_,.l
dz gz ?2 O « o » O u2,3+l
0 ofs Hz €5 O - - - ol |vs, 41
0 y * Cn-1 *
0 sy 2, | Un, J+1
with
AyBy  Byyg - By
U . 1 =2,3, . .
AY? 4 Ay
o = APy @ - Baag
SN L N
By
Ay

2A,; B 1
By = - A121+A—z
A\

By
?l = )
AY
_ AyBy . Bi41 - Big
AY2 4 AY?

91=-@i-—2—3-ui' 1=1,2,
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n-1

i=2,3,. . .,n

. +,n -1

i=2,5,0¢.,n—l

J \

—

(A27)

(A28)

(A29)

(A30)

(A31)



The solution of equation (A27) is effected by triangularizing the matrix
and by a back substitution. Triangularization is accomplished by the transforma-
tion

A
Il

R
}
¥
V]
W
-
a]

, F o (as)

, o Dy _
-9 1Z1-1

1 « e e
* B J

[N
|
I
N
-
W
.
o]

The back substitution i1s effected by

2, h
T, 341 T gl
2! ? (A33)
Py = €1V, 541
uj_’j_*_l = Qi i= n-l,n—z, o e sy 1 J

If a similar argument is followed, solution vectors of Ci,j+l and Ti,j+l can
be computed. Define

%
By = | s = Wy s

Dg = |C%, 541 = C1, 541 (a34)
Az = |TL g1 - Ty, g4

If A, Ap, and Az < o, where o 1is some prescribed tolerance, the solutlon to
equations (A1) to (A4) have been effected for a given z. If Ay > «, however,
the coefficlents A, B, and C of equations (A1l7) to (Al9) may be computed with
the values of wuj j+1, C1,5+1, and Tj j+1. The iteration procedure is then re-
peated untll convergence is obtailned.

The iteration procedure was programmed in Fortran IT for the IRBM 7090. Al-
though the stablility of the solutlon 1s guaranteed by the use of the implicit
scheme, truncation error is governed by the size of Az. It was found that the
iteratlion procedure converged to a tolerance a of 10~% within three or four
trials. The time of running a particular solution is, of course, determined by
the case input parameters; generally, however, the time required to complete a
solution to an axial length of 30 1s about 1.5 to 2 minutes.
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Figure 1l1l. - Concluded. Effect of variation of
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Reynolds number, 1000; Schmidt number, 1;
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heat, B + 1; initial conductivity ratio, 25;
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